JAK-STAT pathway and JAK inhibitors

Authors

  • Carla Minaudo British Hospital, Autonomous City of Buenos Aires, Argentina

DOI:

https://doi.org/10.47196/da.v28i2.2324

Keywords:

JAK-STAT, JAK inhibitors, immunemediated skin diseases

Abstract

The JAK-STAT (Janus Kinase) pathway is an intracellular signal translation chain that is activated through cytokine I and II receptors.

Through this pathway, several molecules of importance in dermatology exert their effects: IL2, IL4, IL7, IL5, IL6, IL9, IL12, IL13, IL15, IL21, IL23, INFα and INFβ, among others. It is also the intracellular signal for hormones such as prolactin and growth hormone.

The inhibition of different components of this pathway is used as therapeutics in rheumatological diseases and an increasing number of skin pathologies.

JAK inhibitors emerged in medical practice approximately 11 years ago, with ruxolitinib and soon after tofacitinib. Currently, there are several approved molecules and many others in the experimental stage.

This article will develop the intracellular organization and functions of the JAK-STAT pathway with its main variants related to immune-mediated diseases, as well as the most relevant characteristics of JAK inhibitors.

Author Biography

Carla Minaudo, British Hospital, Autonomous City of Buenos Aires, Argentina

Dermatologist

References

I. Hu XLJ, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021;6:402.

II. Jiménez GA, Vélez Hoyos A, Buchelli Ibarra N. Mitología griega y romana asociada con algunos términos en patología. Patología 2020;58:1-11.

III. Chapman S, Kwa M, Gold LS, Lim HW. Janus kinase inhibitors in dermatology: Part I. A comprehensive review. J Am Acad Dermatol. 2022;86:406-413.

IV. Wan YY, Flavell RA. How diverse–CD4 effector T cells and their functions. J. Mol. Cell Biol 2009;1:20–36.

V. Garcia-Melendo C, Cubiró X, Puig L. Inhibidores de JAK: usos en dermatología. Parte 1: generalidades, aplicaciones en vitíligo y en alopecia areata. Actas Derm Sifilogr 2021;112: 503-515.

VI. Xin P, Xu X, Deng C, Liu S, et ál. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol 2020;80:106210. doi: 10.1016/j.intimp.2020.106210. Epub 2020 Jan 20.

VII. Damsky W, Peterson D, Ramseier J, Al-Bawardy B, et ál . The emerging role of Janus kinase inhibitors in the treatment of autoimmune and inflammatory diseases. Journal of Allergy and Clinical Immunology.2021; 147 814–826.

VIII. Kotyla PJ, Engelmann M, Giemza-Stokłosa J, Wnuk B, et ál . Thromboembolic Adverse Drug Reactions in Janus Kinase (JAK) Inhibitors: Does the Inhibitor Specificity Play a Role?. Int J Mol Sci. 2021;22(5):2449. Published 2021 Feb 28. doi:10.3390/ijms22052449

IX. Howell MD, Kuo FI, Smith PA. Targeting the Janus Kinase Family in Autoimmune Skin Diseases. Frontiers in immunology 2019;10:2342. https://doi.org/10.3389/fimmu.2019.02342

X. Wan YY. GATA3: a master of many trades in immune regulation. Trends Immunol 2014;35:233-242.

XI. Wan YY, Flavell RA. How diverse–CD4 effector T cells and their functions. J. Mol. Cell Biol 2009;1:20–36.

XII. Jiang Q, Yang G, Xiao F, Xie J, et ál. Role of Th22 Cells in the Pathogenesis of Autoimmune Diseases. Front Immunol. 2021;12:688066. Published 2021 Jul 6. doi:10.3389/fimmu.2021.688066

XIII. Chakraborty S, Kubatzky KF, Mitra DK. An Update on Interleukin-9: From Its Cellular Source and Signal Transduction to Its Role in Immunopathogenesis. Int J Mol Sci. 2019;20:2113. Published 2019 Apr 29. doi:10.3390/ijms20092113

XIV. Tanaka Y, Luo Y, O’Shea JJ, Nakayamada S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat Rev Rheumatol 2022;18: 133–145.

XV. Ciechanowicz P, Rakowska A, Sikora M, Rudnicka L. JAK-inhibitors in dermatology. Current evidence and future applications. J Dermatolog Treat 2019;30:648-658

XVI. Clarke B, Yates M, Adas M, Bechman K, et ál. The safety of JAK-1 inhibitors. Rheumatology (Oxford). 2021;60(Suppl 2):ii24-ii30. doi:10.1093/rheumatology/keaa895

XVII. Alharthi S, Turkmani MG, AlJasser MI. Acne exacerbation after tofacitinib treatment for alopecia areata. Dermatol Reports. 2022;14:9396. Published 2022 Jan 1. doi:10.4081/dr.2022.9396

XVIII. Hoisnard L, Lebrun-Vignes B, Maury S, Mahevas M, , et ál . Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database. Scientific reports 2022;12:7140. https://doi.org/10.1038/s41598-022-10777-w

XIX. Kragstrup TW, Glintborg B, Svensson AL, McMaster, et ál . Waiting for JAK inhibitor safety data. RMD open 2022. 8; e002236. https://doi.org/10.1136/rmdopen-2022-002236

XX. Ozdede A, Yazıcı H. Cardiovascular and Cancer Risk with Tofacitinib in Rheumatoid Arthritis. N Engl J Med. 2022;386(18):1766.

XXI. U. S. Food & Drug Administration. FDA requires warnings about increased risk of serious heart-related events, cancer, blood clots, and death for JAK inhibitors that treat certain chronic inflammatory conditions, https://www.fda.gov/drugs/drug-safety- and-availability/fda-requires-warnings-about-increased- risk-serious-heart-related-events-cancer-blood-clots- and-death (2021).

XXII. Elmariah SB, Smith JS, Merola, J. F. JAK in the [Black] Box: A Dermatology Perspective on Systemic JAK Inhibitor Safety. American journal of clinical dermatology 2022;23:427–431.

XXIII. Setyawan J, Azimi N, Strand V, Yarur A, , et ál . Reporting of Thromboembolic Events with JAK Inhibitors: Analysis of the FAERS Database 2010-2019. Drug safety 2022 ;44: 889–897.

Published

2022-06-01

Issue

Section

Continuing Medical Education